Delta Science Education

Billy Li

HKDSE Physics

Core 1: Heat and Gases

Chapter 1: Temperature, Heat and Internal Energy Part 1

直接 Whatsapp Billy sir: 9341 0473

C1 Heat and Gases

@ Delta Science Education

[CH01 TEMPERATURE, HEAT & IE] PART 1

1. Temperature

(1) Meaning of Temperature

■ Temperature is the measurement of the **degree of hotness** or the **average molecular kinetic energy** of a substance.

(2) Fixed points

- Fixed points always occur at a certain temperature and are reproducible in the laboratory.
- Fixed points are used to mark temperature scales on a thermometer.
- Upper fixed point:

Lower fixed point:

point of ____ water (steam point)
at normal atmospheric pressure

point of lice (ice point) at normal atmospheric pressure

C1 Heat and Gases

@ Delta Science Education

[CH01 TEMPERATURE, HEAT & IE] PART 1

Temperature scales (3)

Celsius scale θ :

Steam point of water = Ice point of water =

Kelvin scale T:

Steam point of water = Ice point of water =

Temperature difference:

	degree Celsius (°C) (centigrade)	degree Fahrenheit (°F)	Kelvin scale (K)
Commonly used in	Most of the other countries and scientific purposes	English-speaking countries	Solely scientific purposes
Conversion to °C		$^{\circ}C = \frac{5}{9}(^{\circ}F - 32)$	$^{\circ}C = K - 273$

Examples that you must fully understand

- 1. A cup of water is initially at the room temperature of 25°C. It is heated until it boils.
 - (a) What is the room temperature in Kelvin?
 - (b) What is the rise of temperature of the water in Kelvin?

Whatsapp: 9341 0473

C1 Heat and Gases

[CH01 TEMPERATURE, HEAT & IE] PART 1

2. Thermometers

(1) Requirement of a thermometer

- The thermometer is a device that makes use of **some measurable** which according to the **degree of relative hotness or coldness**.
- Physical properties that can be used to measure temperature:
 - Liquid volume
 - Gas volume or gas pressure
 - Resistance of metal

Examples that you must fully understand

2. The graphs below show how the electrical resistance R of three different circuit elements change with temperature. Which of the circuit elements can be used to measure temperature?

Whatsapp: 9341 0473

C1 Heat and Gases

@ Delta Science Education [CH01 TEMPERATURE, HEAT & IE] PART 1

A liquid-in-glass thermometer (2)

The liquid-in-glass thermometer makes use of the uniform of liquid at different temperatures.
Structure of a liquid-in-glass thermometer:
Two liquids in common use are:
I •
Mercury-in-glass thermometer:
Mercury remains in liquid state from -39°C to 357°C. Thus, it is suitable for measuring temperature but not suitable for measuring temperature.
Mercury is a good It thus gives to changes in temperature.
Mercury is opaque and can easily be seen.
Mercury does not wet glass.
Alcohol-in-glass thermometer:
• Alcohol remains as liquid from -115°C to 78°C, thus it is suitable for measuring temperature but not suitable for measuring temperature.
Alcohol is transparent. It has to be dyed in order to be seen.

Mercury-in-glass thermometer	Alcohol-in-glass thermometer
Can measure high temperature (up to 357 °C)	Can measure low temperature (down to - 115 °C)
Quick response to temperature changes	Slow response to temperature changes
Mercury is poisonous	Alcohol is non-poisonous

Alcohol is **cheaper** than mercury.

C1 Heat and Gases

@ Delta Science Education

[CH01 TEMPERATURE, HEAT & IE] PART 1

■ Water is not used in a liquid-in-glass thermometer:

- Water remains as liquid from 0°C to 100°C.
- Water does not expand uniformly. It has an abnormal expansion from 0°C to 4°C.

- When the temperature of an object is to be measured, only the ____ is used to detect the temperature.
- A good design of thermometer should **respond quickly** to the change of temperature. Designs that can make the thermometer respond quicker to change in temperature includes:
 - using mercury instead of alcohol as mercury is a
 - using a as the heat capacity of the liquid is less; and
 - using a as the conduction of heat will be faster
- To design a thermometer **more sensitive** to the change in temperature, we should:
 - using a as the overall **expansion of the liquid is greater**; and
 - using a _____ as the increase in the height after expansion is greater.
- However, if the length of the thermometer ______, the more sensitive the thermometer is, the the measurable range of the thermometer.

C1 Heat and Gases

1

@ Delta Science Education

[CH01 TEMPERATURE, HEAT & IE] PART 1

Examples that you must fully understand

- 3. Which of the following is / are the advantages of using mercury to measure temperature?
 - (1) Mercury expands uniformly.
 - (2) Mercury can be used in Arctic area where the temperature is very low.
 - (3) Mercury is transparent.
 - (4) Mercury is poisonous.
 - (5) Mercury gives a slow response to change in temperature of the environment.
- 4. Which of the following can increase the sensitivity of a liquid-in-glass thermometer?

- (1) Increase the size of the bulb.
- (2) Increase the length of the glass tube.
- (3) Reduce the thickness of the bore of the glass tube.
- (4) Use a tube having a narrower bore.
- (5) Use a liquid which conducts heat faster.
- 5. Which of the following can make the thermometer response more quickly to temperature change?
 - (1) Increase the size of the bulb.
 - (2) Reduce the thickness of the wall of the bulb.
 - (3) Use mercury instead of alcohol as the liquid for the thermometer.
 - (4) Use a tube having a narrower bore.
- 6. Three thermometers P, Q, R contain mercury. The sizes of bore of P and Q are the same while they are larger than that of R. The lengths of stem of Q and R are the same while they are longer than that of P.

At $0^{\circ}\mathrm{C}$ all mercury goes back to their bulbs. All thermometers can measure temperature above $100^{\circ}\mathrm{C}$.

- (b) Which of the following statements about P, Q and R is / are correct?
 - (1) O measures the larges range of temperature.
 - (2) All three mercury-in-glass thermometers cannot record temperatures below 0°C.

Website: phychembillyli.hk

(3) At 100°C, mercury in all three thermometers reaches the same level.

真・為你度身訂造

THE TRUE TAILOR-MADE PHYSICS

Whatsapp: 9341 0473

Email: phychembillyli@gmail.com

C1 Heat and Gases

@ Delta Science Education

[CH01 TEMPERATURE, HEAT & IE] PART 1

(3) Calibration of a thermometer

- Calibration of a thermometer is to **mark the proper scales** onto the thermometer.
- Procedure of calibration of a mercury-in-glass thermometer:

out the ther	mometer into a cup of	. mark the len	igth of the mercury thread I_L as	
out the ther	mometer into a cup of j	, mark the len	igth of the mercury thread i_L a	S

• Put the thermometer in the steam above a cup of ______, mark the length of the mercury thread I_H as _____.

Assume the expansion is ______, divide the length between \(\mathbb{I}_L \) and \(\mathbb{I}_H \) into ____ equal divisions,
 each division is ______.

Calibration graph:

Equation relating the temperature θ with the length t in a liquid-in-glass thermometer:

31

Whatsapp: 9341 0473

Website: phychembillyli.hk

C1 Heat and Gases

@ Delta Science Education

[CH01 TEMPERATURE, HEAT & IE] PART 1

Lxamples	Ihal:	VOLL	musl	Mul	undersi	land
	LI ICAL	y CACA	LILACIC	LOTHY	CALL KACALCA	KAI KA

- 7. The length of the mercury thread in a mercury-in-glass thermometer is 4 cm at ice point and 20 cm at steam point.
 - (a) What is the temperature when the length of the mercury thread is 14 cm?
 - (b) What would be the length of the mercury thread at the room temperature of 20°C?
 - (c) What is the temperature when the length of the mercury thread is 2 cm?
 - (d) What is the length of the mercury thread in 1°C interval?
- 8. Regarding the thermometer below,

(a) Find the length of the liquid when the temperature is now:

50 °C	-28 °C	750 °C

(b) Find the temperature of the thermometer when the length of the liquid is now:

75 cm 2 cm 150 cm

(c) Can such a thermometer measure temperature of -78°C?

. At this temperature, all of the liquid will go ____ to the ____.

C1 Heat and Gases

@ Delta Science Education

[CH01 TEMPERATURE, HEAT & IE] PART 1

Examples that you must fully understand

9. The distance between the readings of the two fixed points of a mercury thermometer is 20 cm. If the reading of T is 7.4 cm above the reading of 0° C, find T.

- 10. A faulty thermometer with a uniform bore reads –3°C in melting ice and 102°C in boiling water.
 - (a) What does the thermometer read when it is immersed in a liquid with a real temperature of 75°C?
 - (b) What is the real temperature when the reading of the thermometer is 20°C?
 - (c) At what temperature is the thermometer reading equal to the true reading?
- 11. The length of the mercury thread of a thermometer is plotted against temperature in the following graph.

- (a) Write an equation relating the length to the temperature.
- (b) What is the temperature when the length of the mercury thread is 16 cm?
- (c) What will be the length of the mercury thread if the temperature is -10°C?

Email: phychembillyli@gmail.com

Whatsapp: 9341 0473

Website: phychembillyli.hk

C1 Heat and Gases

@ Delta Science Education

[CH01 TEMPERATURE, HEAT & IE] PART 1

(4) Clinical thermometer

- It is a specially designed ____-in-glass thermometer used to measure body temperature.
- It is and has a small temperature range: from 34°C to 42°C
- When the thermometer is just taken out from the human body, the temperature drops. A ______ is used to prevent the mercury thread from falling.
- Mercury is used since it is a good conductor and responds quickly to any change in temperature.

	Examples that you must fully understand
12. A clin	ical thermometer is designed to measure body temperature around 37°C. What are the advantages of the
follow	ving design features?
(i)	It has only a small temperature range from 34°C to 42°C.
	So that the thermometer can be designed to be more
(ii)	It has a very narrow bore.
45 48	It enables the thermometer to be more
(iii)	It has a thin glass wall at the bulb.
1.1 nAttar	It enables the thermometer to to changes in temperature.
(iv)	It has a constriction in the bore.
# #	It prevents the liquid from to the when the thermometer is from
	the human body.
13. Expla	in the followings about a clinical thermometer:
(i)	liquid mercury is used rather than water;
	The volume of water is not with temperature. The
	upon is much smaller for water. Mercury is a better of
	heat than water.
(ii)	the glass wall is very thin; and
	Thermometers with thin glass wall can give ato temperature change.
(iii)	we should not sterilize the thermometer using boiling water
	It is because the of clinical thermometer is much than boiling point.
	The thermometer will if it reaches the boiling point of water. Also, it takes long
	time to let the reading back the

真・為你度身訂造

Email: phychembillyli@gmail.com

0.50.5

Whatsapp: 9341 0473

Website: phychembillyli.hk

C1 Heat and Gases

@ Delta Science Education

[CH01 TEMPERATURE, HEAT & IE] PART 1

Other types of thermometers (5)

Thermistor thermometer

- Resistance of the thermistor when temperature increases. Therefore, a current can be obtained.
- Measuring the current can thus know the temperature.
- It is usually used in an automation circuit.

Resistance thermometer 11.

- Resistance of metal wire when temperature increases. Therefore, a current can be obtained.
- Measuring the current can thus know the temperature.
- It can measure temperatures of over a thousand degrees Celsius and can be used in industry to measure the temperatures of ovens and furnaces.

- 1000
- Thermistor Thermometer:
- Resistance Thermometer:

Whatsapp: 9341 0473

C1 Heat and Gases

@ Delta Science Education [CH01 TEMPERATURE, HEAT & IE] PART 1

III. Infra-red thermometer

- If an object is at a temperature higher than , it emits radiation.
- The higher the temperature, the the infra-red radiation an object emits.
- Measuring the amount of infra-red can thus know the temperature.
- It is usually used in measuring body temperature.

IV. Rotary thermometer

- This thermometer makes use of a bimetallic strip that consists of two strips of different metal joined together surface to surface.
- The strip bends as one metal expands more than the other under temperature change. As temperature increases, the coiled bimetallic strip bends more to rotate a pointer around on a scale.
- Brass and iron are usually used to make the bimetallic strip in a rotary thermometer.
- Rotary thermometer is usually ____ in response.

C1 Heat and Gases

@ Delta Science Education

[CH01 TEMPERATURE, HEAT & IE] PART 1

V. Liquid crystal thermometer

A liquid crystal thermometer is a type of thermometer that contains ______ liquid crystals in a plastic strip that change _____ to indicate different temperatures.

THE TRUE TAILOR-MADE PHYSICS Whatsapp: 9341 0473

真・為你度身訂造